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ABSTRACT

The Mesoscale Predictability Experiment (MPEX) conducted during the spring of 2013 included frequent

coordinated sampling of near-storm environments via upsondes. These unique observations were taken to

better understand the upscale effects of deep convection on the environment, and are used to validate the

accuracy of convection-allowing (Dx5 3 km) model ensemble analyses. A 36-member ensemble was created

with physics diversity using theWeather Research and ForecastingModel, and observations were assimilated

via the Data Assimilation Research Testbed using an ensemble adjustment Kalman filter. A 4-day sequence

of convective events from 28 to 31 May 2013 in the south-central United States was analyzed by assimilating

Doppler radar and conventional observations. No MPEX upsonde observations were assimilated. Since the

ensemble mean analyses produce an accurate depiction of the storms, the MPEX observations are used to

verify the accuracy of the analyses of the near-storm environment.

A total of 81 upsondes were released over the 4-day period, sampling different regions of near-storm

environments including storm inflow, outflow, and anvil. The MPEX observations reveal modest analysis

errors overall when considering all samples, although specific environmental regions reveal larger errors in

some state fields. The ensemble analyses underestimate cold pool depth, and storm inflow meridional winds

have a pronounced northerly bias that results from an underprediction of inflow wind speed magnitude. Most

bias distributions areGaussian-like, with a few being bimodal owing to systematic biases of certain state fields

and environmental regions.

1. Introduction

Convection-allowing models (CAMs) have been

found to be very valuable to improved predictions of the

organization and evolution of convection (e.g., Kain

et al. 2006, 2008; Clark et al. 2010a,b). Reliable forecasts

of deep convection are needed to improve warnings

for associated high-impact meteorological phenomena

(e.g., damaging winds, flash flooding, hail, tornadoes;

Stensrud et al. 2009, 2013). The practical predictability

of such events is largely dependent on having accurate

initial conditions and small model error (Zhang et al.

2007; Cintineo and Stensrud 2013). Results from

Cintineo and Stensrud (2013) suggest that convective

environments must be well represented by themodels to

ensure reasonable forecast accuracy. Thus, one facet

that must be well depicted is the impact of long-lived

convection on the environment (i.e., upscale feedbacks).

Proper depictions of these feedbacks should lead to

better short-term forecasts. The largest hindrance to

evaluating the accuracy of model analyses of near-storm

environments is the lack of sufficient observations to

perform such studies.
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The Mesoscale Predictability Experiment (MPEX)

included frequent, coordinated sampling of near-storm

environments during 15 May–15 June 2013 across the

U.S.Great Plains using radiosondes (also called upsondes

or sondes) (Weisman et al. 2015; Trapp et al. 2016;

Hitchcock et al. 2016). These upsondes provided vertical

profiles of temperature, humidity, pressure, and zonal

and meridional wind components at a variety of nearby

locations relative to areas of deep convection and thus

should have sampled the upscale feedbacks from con-

vection on the nearby mesoscale environment. While

many previous studies have demonstrated the impacts

of deep convection on the surrounding environment

through either model simulations (e.g., Maddox 1980;

Fritsch and Maddox 1981b; Brooks et al. 1994; Stensrud

1996; Stensrud and Anderson 2001) or observations (e.g.,

Fritsch and Maddox 1981a; Parker 2014), the number of

near-storm environment observations has been limited

causing extensive verification to be neglected.

Mesoscale convective systems (MCSs) are known to

be a cause of upper-tropospheric meso-a-scale anticy-

clones (Ninomiya 1971a,b; Maddox 1980; Fritsch and

Maddox 1981a,b; Anabor et al. 2009; Trier and Sharman

2009; Metz and Bosart 2010). With these anticyclones,

200-hPa winds and geopotential heights can be perturbed

by over 20ms21 and 80m, respectively (Leary 1979;

Fritsch and Maddox 1981a,b; Perkey and Maddox 1985;

Smull and Augustine 1993). These perturbations often

are observed relatively soon after the convective event

(6–24h; Weisman et al. 2015). Jet streaks have also been

shown to be enhanced due to the presence of MCSs

(Keyser and Johnson 1984; Wolf and Johnson 1995a,b).

Simulated supercells increase storm-relative environmen-

tal helicity (SREH) and convective available potential

energy (CAPE) within convective inflow regions (Brooks

et al. 1994). Low-level inflow to deep convection also in-

creases if the convection is persistent (Stensrud 1996).

Although many studies have described the impacts of

deep convection on the large-scale environment, few

have focused on nearby mesoscale environmental im-

pacts and the accuracy of numerical weather models’

depictions of these alterations. Numerous studies have

shown that CAMs can successfully simulate the struc-

ture of convection via radar data assimilation (e.g.,

Snyder and Zhang 2003; Dowell et al. 2004; Yussouf

et al. 2013, 2015; Johnson et al. 2015). However, does

radar data assimilation with a CAM provide sufficient

information for storm-scale model analyses to reason-

ably represent the changes in the near-storm environ-

ment from convective feedbacks? Using upsonde

observations collected from near-storm environments

during MPEX, a more complete evaluation of model

ensemble analysis accuracy within the environments

surrounding deep convection is performed. This evalu-

ation is done in order to assess whether the numerical

model’s depiction of the environments influenced by

convection is reasonable. This evaluation will reveal any

systematic biases and model errors within the con-

vectively perturbed environment that could influence

subsequent predictions of convective evolution.

The next section describes the events of interest from

MPEX and the corresponding upsonde operations.

Section 3 outlines the model configuration and data as-

similation experiments. Results are presented in section

4 with a discussion and conclusions in section 5.

2. MPEX upsonde operations and convective
events

Four mobile upsonde units operated during MPEX to

sample preconvective (PDE strategy) and near-storm en-

vironments that were convectively disturbed (CDE;

Weisman et al. 2015; Trapp et al. 2016). These units were

from the National Severe Storms Laboratory (NSSL),

Purdue University, Colorado State University (CSU), and

Texas A&M University (TAMU). NSSL, Purdue, and

TAMU used radiosondes manufactured by International

Met Systems (iMet) while CSU made use of Vaisala ra-

diosondes. The differences in observation error and data

quality between these two radiosonde systems are negli-

gible (Trapp et al. 2016). Sondes were carried by 200-g

latex balloons that could ascend above the tropopause,

havingmaximum flight times of approximately 1h. During

CDE sampling, observations were collected in convective

inflow, convective outflow, and anvil regions among others.

The four convective events highlighted in this study

occurred during 28–31 May 2013 in portions of Texas,

Oklahoma, and Kansas. Forcing for convection initiation

generally stemmed from drylines, with modest large-scale

forcing resulting from a cyclonic vorticity maximum

ejecting into the central United States. All four MPEX

upsonde units targeted a diminishing thunderstorm cluster

in the Oklahoma Panhandle moving into southern Kansas

on 28 May. The units predominantly sampled the down-

stream environment at fixed locations, beginning at

2000 UTC in a rectangular formation, to measure envi-

ronmental changes as convection approached their loca-

tions (Fig. 1a). The final sonde was released around

0030UTC29May.An example of simultaneously released

upsonde profiles show how a realistic convective environ-

ment can vary over short distances (,150km; Fig. 2). The

NSSL and TAMU launches were approximately 115km

apart, but TAMUobserved a stout capping inversionwhile

NSSL—located closer to the dryline—did not. The fol-

lowing day (29 May) featured a developing squall line in

the Texas Panhandle that eventually translated into
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western Oklahoma. Upsondes were released in the wake

of the squall line and sampled the environment around a

bookend vortex on the convective line’s northern edge

(Fig. 1b). Deployments shifted to central Oklahoma for

30 and 31 May, where supercell thunderstorms were

targeted. The inflow region of a nontornadic supercell

was sampled every 30min for several hours on 30May by

NSSL, while the three other units sampled the convective

wake and environment to the north of this predominately

eastward-moving supercell (Fig. 1c). NSSL, Purdue, and

CSU sampled the tornadic supercell that produced a

large tornado near El Reno, Oklahoma, on 31 May

(Bluestein et al. 2015). As in the previous day, both inflow

and wake regions were sampled frequently (Fig. 1d).

Over this 4-day period, a total of 81 upsondes were

released. It should be noted that some upsondes did not

ascend very far above 600hPa after release for a variety

of reasons (interference with convection, balloon burst,

etc.), so only the profiles below upsonde termination are

used for verification. Manual quality control also was

applied to the entire upsonde dataset. The estimated

accuracies of the upsonde observations are 0.5K for

temperature, 5% for relative humidity, 1m s21 for the

zonal and meridional wind components, and 1hPa for

pressure between the surface and tropopause.

3. Experimental design

The 4-day sequence chosen is simulated using the

Advanced Research version of the Weather Research

and Forecasting Model (WRF-ARW), version 3.4.1

(Skamarock et al. 2008). A nested domain is placed over

FIG. 1. Hourly observed reflectivity 30-dBZ contours for (a) 2100 (black), 2200 (blue), and 2300 (green)

UTC 28 May; (b) 2100 (black), 2200 (blue), and 2300 (green) UTC 29 May; (c) 1900 (black), 2000 (blue),

2100 (green), and 2200 (gray) UTC 30 May; and (d) 2200 (black) and 2300 (blue) UTC 31 May, and 0000 (green)

and 0100 (gray) UTC 1 Jun. MPEX upsonde releases are denoted with circles [NSSL (red), Purdue (orange), CSU

(yellow), and TAMU (purple)].
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portions of Texas, Oklahoma, and Kansas in order to

encompass all targeted convection during the 28–31May

period. This inner domain has a horizontal grid spacing

of 3 km while the outer domain (CONUS) has a grid

spacing of 15 km (Fig. 3). Both domains used 51 vertical

layers from the surface to 10 hPa. The NSSL Experi-

mental Warn-on-Forecast (WoF) System for ensem-

bles (NEWS-e) is utilized (Wheatley et al. 2015; Jones

et al. 2016). This 36-member ensemble is initialized

at 0000 UTC each respective day using a downscaled

FIG. 2. 2100UTC 28MayMPEX sounding skewT–log p thermodynamic profiles and hodographs with NSSL (red),

Purdue (orange), CSU (green), and TAMU (purple).

FIG. 3. Outer model domain (CONUS; 15-km grid spacing) and nested, convection-resolving

domain (3-km grid spacing), which includes KS, OK, and the TX Panhandle.
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21-member Global Ensemble Forecast System (GEFS).

The boundary conditions for the outer domain are also

created using the GEFS. The outer domain serves as the

boundary conditions for the inner domain.

Ensemble members are developed following

Wheatley et al. (2015) using a combination of 18 GEFS

members and 18 physics combinations of planetary

boundary layer (PBL), longwave and shortwave ra-

diation, and convective (outer domain only) param-

eterization schemes (Table 1). Members 1–18 are

initialized with the corresponding GEFS member

(member 1 with GEFS member 1, member 2 with

GEFS member 2, etc.) and are run with the corre-

sponding numerical physics combination from Table 1.

Members 19–36 are initialized with the same 18 GEFS

members in descending order (member 19 with GEFS

member 18, member 20 with GEFS member 17, etc.)

while running the physics combinations in ascending

order (member 19 with combination 1, member 20 with

combination 2, etc.) All ensemble members use the

Thompson et al. (2008) microphysics scheme. Since

there are only 18 unique initial conditions at 0000 UTC

(due to only 18 GEFS members), the model is in-

tegrated 1 h forward to 0100 UTC each day to create

36 unique initial conditions.

a. Mesoscale data assimilation

Hourly cycles of mesoscale data assimilation begin at

0100 UTC, when the first analysis is created. Conven-

tional observations of temperature, dewpoint, pressure,

and zonal and meridional wind components, provided

by the NOAA/Meteorological Assimilation Data In-

gest System (MADIS), are assimilated using an en-

semble adjustment Kalman filter (EAKF) available via

the Data Assimilation Research Testbed (DART;

Anderson 2001; Anderson et al. 2009). These observa-

tions platforms include METAR and marine surface

stations, the Aircraft Communications Addressing and

Reporting System (ACARS), and rawinsondes along

with data from MADIS mesonet and the Oklahoma

Mesonet. The MPEX upsonde observations are not

assimilated.

The Gaspari and Cohn (1999) Gaussian-like locali-

zation function is utilized for all observations assimi-

lated. The horizontal localization cutoff for nonmesonet

mesoscale observations is approximately 458km with a

vertical localization cutoff of 8 km [consistent with

Wheatley et al. (2012, 2015)]. Mesonet observations

have a horizontal localization of approximately 60 km

[consistent with Sobash and Stensrud (2015), Wheatley

et al. (2015), and Jones et al. (2016)]. Ensemble spread is

maintained using spatial and temporal prior adaptive

inflation (Anderson 2007).

b. Storm-scale data assimilation

At a predetermined time based on each day’s con-

vective event (Table 2), storm-scale data assimilation

begins. Level-II radar data (radar reflectivity and radial

velocity; radars for each event listed in Table 2) are as-

similated every 15min along with MADIS mesonet,

Oklahoma Mesonet, and conventional rawinsonde ob-

servations. As with the outer domain, no MPEX ob-

servations are assimilated. The horizontal localization

cutoff for radar observations is 18 km with a 6-km ver-

tical cutoff (Yussouf et al. 2013; Wheatley et al. 2014,

2015; Jones et al. 2016). Surface and conventional ra-

winsonde observations retain the identical localization

specifications as used in mesoscale data assimilation.

This assimilation only updates the inner domain as the

parent domain continues to serve as lateral boundary

conditions without update from data assimilation. Radar

reflectivity observations less than 10dBZ are considered

clear-air reflectivity observations and set to 0 dBZ

(Wheatley et al. 2015). Radial velocity observations are

only assimilated if they are collocated with reflectivity

observations exceeding or equal to 20dBZ.

TABLE 1. Physics options applied to 18 GEFS members. This set

of physics options also is applied to these same 18 GEFS members

in reverse order to create members 19–36 (e.g., member 19 is ini-

tialized with GEFS member 18 but has physics option 1 applied).

The Thompson microphysics and RAP land surface parameteri-

zation is applied to all members. PBL schemes include the Yonsei

University (YSU), Mellor–Yamada–Janjić (MYJ), and Mellor–

Yamada–Nakanishi–Niino (MYNN) schemes. Shortwave (SW)

and longwave (LW) radiation schemes include the Dudhia short-

wave scheme, Rapid Radiative Transfer Model (RRTM) short-

wave scheme, and the Rapid Radiative Transfer Model–Global

(RRTMG) shortwave and longwave schemes (adapted from

Wheatley et al. 2015).

Member PBL SW radiation LW radiation Cumulus

1 YSU Dudhia RRTM Kain–Fritsch

2 YSU RRTMG RRTMG Kain–Fritsch

3 MYJ Dudhia RRTM Kain–Fritsch

4 MYJ RRTMG RRTMG Kain–Fritsch

5 MYNN Dudhia RRTM Kain–Fritsch

6 MYNN RRTMG RRTMG Kain–Fritsch

7 YSU Dudhia RRTM Grell

8 YSU RRTMG RRTMG Grell

9 MYJ Dudhia RRTM Grell

10 MYJ RRTMG RRTMG Grell

11 MYNN Dudhia RRTM Grell

12 MYNN RRTMG RRTMG Grell

13 YSU Dudhia RRTM Tiedtke

14 YSU RRTMG RRTMG Tiedtke

15 MYJ Dudhia RRTM Tiedtke

16 MYJ RRTMG RRTMG Tiedtke

17 MYNN Dudhia RRTM Tiedtke

18 MYNN RRTMG RRTMG Tiedtke
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After quality control of radar observations, the data are

objectively analyzed to a 6-km Cartesian grid using the

Cressman scheme (Cressman 1959) via the Observation

Processing and Wind Synthesis (OPAWS; Majcen et al.

2008) software. Radar observations collected within a

15-min window centered on the analysis time are assim-

ilated. Observation errors of 5dBZ for radar reflectivity

and 3ms21 for radial velocity are assumed uniform and

constant throughout each experiment (Dowell et al. 2004;

Aksoy et al. 2009; Yussouf et al. 2013, Wheatley et al.

2015; Jones et al. 2016). Convection spinup is induced by

the additive noise technique developed by Dowell and

Wicker (2009). Perturbations are added to the tempera-

ture, dewpoint, and horizontal wind fields in each mem-

ber at locations where the reflectivity innovations

are .10dBZ and reflectivity observations are .25dBZ

(Sobash and Wicker 2015).

The 15-min storm-scale data assimilation cycling con-

tinues until a predetermined ending time that is unique to

each experiment (Table 2). The ending times are based on

the end of MPEX upsonde operations. High-resolution

(Dx 5 3km) ensemble analyses are thus available every

15min from convection initiation to the end of MPEX

operations for each of the four cases. MPEX upsonde

observations are windowed to the closest 15-min analysis

time to the upsonde release time. All observations col-

lected by each sonde are considered valid at this analysis

time. Ensemble sounding profiles are created for each

MPEX upsonde by linearly interpolating the ensemble

analysis output to the horizontal sonde location at loga-

rithmically interpolated 25-hPa vertical increments.

Windowing each observation throughout the flight did not

result in statistically significant differences (not shown).

4. Results

A subjective evaluation of the analyses rendered with

radar data assimilation indicate that the 15-min ensemble

mean analyses reproduce the structures of supercells,

squall lines, and other convective features as seen in earlier

studies (Snyder and Zhang 2003; Dowell et al. 2004; Tong

and Xue 2005; Aksoy et al. 2009, 2010; Yussouf and

Stensrud 2010). The ensemble mean reflectivity analyses

show that the depictions of the targeted convection on

each day compare reasonably to reflectivity observations

(Figs. 4a–d). Further evidence of radar data assimilation

effectiveness is shown by the root-mean-square error

(RMSE)and total ensemble spread from28May (Figs. 4e,f),

which illustrate how radial velocity and reflectivity as-

similation has positive impacts on ensemble mean ana-

lyses. Similar behaviors are seen in the other three cases

and indicate that the ensemble data assimilation system is

producing a reasonable analysis of the ongoing convection.

a. Near-storm environment analysis errors

The ensemble mean analyses of the near-storm envi-

ronment are evaluated using diagnostics with the special

MPEXobservations of temperature, relative humidity, and

zonal andmeridionalwind components.Vertical profiles of

the root-mean-square difference (RMSD) are calculated

using samples over the 4-day period and is defined as

RMSD5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
N

n51

(xna 2 xno)
2

s
,

where xna is the ensemble mean analysis, xno is observa-

tion, and N is the number of observations collected at

the respective pressure level over the 4-day period.

Mean ensemble spread (MES) is defined as

MES5
1

N
�
N

n51

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
obs 1

1

35
�
36

i51

(x
a
2 x

ia
)2

s
,

where i is ensemble member, s2
obs is observation error var-

iance, xa is ensemble mean analysis, xia is ensemble mem-

ber analysis, andN is the number of observations. Another

diagnostic is mean bias of the analyses (MB), defined as

MB5
1

N
�
N

n51

(xna 2 xno) ,

where xna , x
n
o, and N are previously defined.

TABLE 2. Description of the convective events each day. The start and end times of radar data assimilation are listed with the corre-

sponding radars that collected the data includingDodgeCity, KS (KDDC);Amarillo, TX (KAMA);VanceAir Force Base, OK (KVNX);

Wichita, KS (KICT); Oklahoma City, OK (KTLX); and Frederick, OK (KFDR). The number of MPEX upsondes released during each

event is listed last.

Date Event Radars Start time End time Upsondes

28 May Oklahoma Panhandle; southern

Kansas thunderstorm cluster

KDDC, KICT, KAMA,

KVNX

1900 UTC 0200 UTC (29 May) 18

29 May Texas Panhandle; western Oklahoma

bow echo and bookend vortex

KAMA, KFDR, KDDC,

KVNX

1700 UTC 2345 UTC 20

30 May Central Oklahoma nontornadic supercell KTLX, KFDR 1700 UTC 2300 UTC 28

31 May Central Oklahoma tornadic supercell KTLX, KFDR, KVNX 2100 UTC 0230 UTC (1 June) 15
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The pressure-dependent sample size (Fig. 5a) has a

magnitude of 81 between 925 and 850 hPa. The sample

size generally decreases with height due to a variety of

sonde and/or balloon failures. At 500 hPa, the sample

size is 70. The sample size continues to decrease,

reaching only 11 at 100hPa. As previously stated, up-

sondes were released in a variety of regions surrounding

the targeted convection including inflow, anvil, and

outflow. Inflow soundings are designated as those re-

leased in areas where ground-relative low-level winds

FIG. 4. Examples of low-level ensemble mean analysis reflectivity and surface winds (kt, barbs) with observed

20-dBZ reflectivity outlined with solid black line, at 0.58 tilt by the designated radar: (a) 2300 UTC 28May (KDDC),

(b) 2200 UTC 29 May (KAMA), (c) 2000 UTC 30 May (KTLX), and (d) 2300 UTC 31 May (KTLX). Example of

(e) radial velocity and (f) reflectivity sawtooth diagrams show ensemblemean prior and posteriorRMSE (blue) and

ensemble total spread (green) from 28 May with time (min) after storm-scale assimilation begins.
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are directed into the region of convection. Anvil re-

gions are areas under upper-level cloud produced by

convection, including instances where inflow soundings

sampled the storm anvil in upper levels. Outflow en-

vironments are mainly confined to upstream (relative

to storm motion) cold pool regions along with surging

outflow ahead of convective cells. The upsonde counts

for individual regions within the near-storm environ-

ments (Fig. 5) show a modest sample size for inflow and

outflow regions (17 and 15 upsondes, respectively). A

majority of upsondes were released within anvil regions

(56 upsondes).

The RMSD of ensemble mean temperature for all 81

samples (Fig. 6a) reveals a local maximum just below

850hPa of approximately 2K. While the MB (Fig. 6b)

does not show a local maximum at this height, the MES

below 850hPa exceeds 6K. Inspection of individual

soundings suggests that this RMSD maximum is caused

by the analyses failing to accurately capture the capping

inversion strength, as also seen in Coniglio et al. (2013).

Another local RMSD maximum of ;1.75K is seen

at 500 hPa in association with a local extreme in MB

of ;21K, part of a midlevel cold bias that is present

across all regions. Inspection of individual observed

upsondes often reveals the presence of weak to moder-

ate stable layers at the top of the elevated mixed layer

(as in the CSU and TAMU soundings in Fig. 2). These

features are not captured by the analyses, which tend to

have smooth vertical temperature profiles, contributing

to the midlevel cold bias. The largest RMSD, MES, and

MB are in upper levels near the tropopause. Tempera-

tures near the tropopause have large spatial variations,

as seen in Fig. 2 where upsondes were released within

150 km of each other. Significant horizontal gradients in

tropopause temperature lead to larger RMSDs andMBs

as well as large MES due to ensemble variability.

For inflow soundings, observations reveal a small

warm bias of approximately 1K from the surface up to

600 hPa that slowly transitions to a negative bias by

500 hPa (Figs. 6c,d). In contrast, outflow analyses have a

large warm MB of slightly less than 2K in low levels

(near 850 hPa; Figs. 6e,f), corresponding to a very large

RMSD of approximately 4K at the same pressure level.

This warm bias is unique to outflow regions since it does

not appear in nonoutflow regions. The pronounced

warm bias and RMSD maximum in these low levels is

due to the analysis cold pools being warmer than ob-

served, as also suggested by Engerer et al. (2008). This

result also suggests cold pools are too shallow in the

ensemble analyses. Some outflow samples are consid-

ered anvil as well (Figs. 6g,h), where the inclusion of

outflow samples is the source of the RMSD maximum

near 850 hPa for these two regions. The anvil region

MES in upper levels of the troposphere increases dra-

matically, signifying large temperature ensemble varia-

tions within thunderstorm anvils.

Relative humidity RMSDs for all upsondes increase

with height, beginning near 6% at 925hPa and in-

creasing to approximately 18% between 850 and

700 hPa (Fig. 7a). MB magnitudes are less than 10%

below 500hPa, suggesting that low-level relative hu-

midity analyses are reasonable (Fig. 7b). RMSD and

MB continue to increase into the midlevels (;400 hPa)

reaching;25% and;13%, respectively, and the values

of RMSD tend to remain fairly constant until the tro-

popause. Inspection of a number of upsonde humidity

profiles suggests that the larger RMSDs and MBs in

mid- to upper levels likely are due in part to either the

presence or absence of observed moist layers combined

with smooth ensemble analyses and large MES. As

Fig. 2 suggests, moist layers have well-defined tops

where relative humidity decreases rapidly with height.

Therefore, small vertical displacement errors in the lo-

cations of the moist layers produce large RMSDs. The

upsondes also have a known issue measuring humidity

when RH is ,20%, a common occurrence in upper

levels of the troposphere (Sapucci et al. 2005), which

contributes to the large positive MB and large RMSD

values above 400hPa. Large RMSD and, by compari-

son, small MB below 700hPa, result from a large vari-

ance in analysis errors among samples. This result is

evidenced by MES between 850 and 700 hPa, where the

MES magnitude approaches 80%.

The RMSDs of zonal and meridional winds for all

upsondes reveal relatively small analysis errors in low

levels (Figs. 8a and 9a). The zonal wind RMSD is less

FIG. 5. Number of MPEX upsonde samples with height during

28–31 May. All (black), inflow (thick blue), noninflow (thin blue),

outflow (thick green), nonoutflow (thin green), anvil (thick red),

and nonanvil (thin red).
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FIG. 6. Vertical profiles of temperature (T) (left) root-mean-square difference (RMSD, solid) and mean

ensemble spread (MES, dashed), and (right) mean bias (MB, solid). (a) All upsonde RMSD and MES,

1000–100 hPa; (b) all upsonde MB, 1000–100 hPa; (c) inflow (red) and noninflow (blue) RMSD and MES,

1000–500 hPa; (d) inflow (red) and noninflow (blue)MB, 1000–500 hPa; (e) outflow (red) and nonoutflow (blue)

RMSDandMES, 1000–500 hPa; (f) outflow (red) and nonoutflow (blue)MB, 1000–500 hPa; (g) anvil (red) and

nonanvil (blue) RMSD and MES, 1000–100 hPa; and (h) anvil (red) and nonanvil (blue) MB, 1000–100 hPa.
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FIG. 7. As in Fig. 6, but for relative humidity (RH).
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FIG. 8. As in Fig. 6, but for zonal winds (u wind).
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FIG. 9. As in Fig. 6, but for meridional winds (y wind).
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than 5m s21 below 450hPa but slowly and steadily in-

creases until 225 hPa. The zonal mean MB (Fig. 8b)

oscillates around 0ms21 in the low to midlevels and is

strictly positive above ;325hPa. Meridional winds also

have RMSDs less than 5m s21 above 925 hPa and below

500hPa. Both the zonal and meridional winds have a

local RMSD maximum in the upper levels of the tro-

posphere near 200 hPa, with the zonal wind having a

small positive MB and the meridional wind having a

larger negative MB. This finding is associated with large

MES within thunderstorm anvils for both zonal and

meridional winds (Figs. 8g and 9g). An encouraging

result arises from the inflow region zonal wind below

500hPa, where MB oscillates between 22 and 2ms21

throughout that vertical depth (Fig. 8d). However, the

inflow region meridional wind has negative MBs for the

entire depth with magnitudes reaching ;3m s21 and

RMSDs at or above 5m s21 (Figs. 9c,d). The northerly

bias indicates an underprediction of inflow wind speeds

into the convective region given the strong southerly

component associated with storm inflow in the supercell

cases of 30 and 31 May. The noninflow region results

show smaller meridional wind RMSDs in low to mid-

levels than found in the inflow region by comparison.

Wind speed for all upsondes is negatively biased in the

analyses from the surface to 400 hPa (Fig. 10b). A neg-

ative wind speed maximum in MB occurs at 200 hPa.

This maximum is collocated with a negative meridional

wind MB at 200 hPa (Fig. 9b), which produces the neg-

ative wind speed bias along with some directional error.

A comparison of wind components in the 150–100-hPa

layer shows the zonal wind to be slightly overestimated

while the meridional wind MB is near 0. The inflow re-

gion low-level wind speeds are underpredicted much

more so than low-level noninflow region wind speeds

(Fig. 10d). Outflow wind speed MB is similar to non-

outflow MB (Fig. 10f). The large MES is once again

present within upper levels of anvil regions (Fig. 10g).

Another environmental parameter conducive for

convection includes vertical wind shear. The RMSDs of

surface–700-hPa and surface–500-hPa wind shear are 5.9

and 4.5m s21, respectively (Table 3). Magnitudes of MB

for both layers are quite small (20.8 and 20.3m s21,

respectively). The large RMSD and small MB imply a

large variance among samples. Model analyses reveal

steep shear gradients near convection (not shown),

which would induce large variances when spatial errors

are present. Of all near-storm environment regions, in-

flow regions have the largest RMSDs for both surface–

700-hPa and surface–500-hPa wind shear. All other

regions are very comparable to the overall values pre-

viously mentioned. TheMBs of all regions except inflow

are comparable as well. Inflow surface–700-hPa MB is

notably larger in magnitude (negative value) since the

meridional winds analyses have a notable northerly bias.

b. Bias distributions

Histograms are used to show the distribution of biases

for different state fields. At pressure levels where there

are large magnitudes of RMSD and/or MB, these dis-

tributions may shed light on bias characteristics. Biases

of each ensemble member for each sample are calcu-

lated for selected variables at specified pressure levels.

The resulting bias distribution for 875-hPa temperature

is Gaussian-like with a maximum on the positive side of

zero and more bias samples .4 than ,24K (Fig. 11a).

Another Gaussian distribution is suggested in the

relative humidity errors at 750 hPa (Fig. 11b). However,

the peak of the distribution is near 15%. As the mag-

nitude of the MB increases, there are generally more

negative samples than their positive counterparts. The

225-hPa zonal wind field reveals a bimodal distribution

where one peak is near zero and a second peak is be-

tween 5 and 10m s21 (Fig. 11c). It should be noted that

there are many samples of extremely large bias magni-

tude (.15ms21), indicating large differences with some

ensemble members. A histogram of 200-hPa meridional

wind bias also has a bimodal distribution (Fig. 11d).

However, the two maximums are near zero and

between 25 and 210ms21.

c. Physics-dependent errors

Figure 12 depicts differences in MB and RMSD

among ensemble members that differ in their physics

as described in Table 1. The nested domain physics has

variations in PBL scheme (i.e., 3) and shortwave/

longwave radiation scheme combinations (i.e., 2; see

Table 1). Temperature biases below approximately 600hPa

are largely dependent on PBL scheme (Figs. 12a,b).

The YSU PBL scheme results in larger warm biases

below 850hPa and smaller warm biases between 850 and

600 hPa compared to the other schemes. When com-

bined with results with relative humidity (Figs. 12c,d),

where the YSU scheme has a dry bias below 850 hPa

and a moist bias above 850 hPa, the data suggest that

YSU produces boundary layers that are too deep. Dry

biases above 850 hPa for MYJ and MYNN PBL

schemes suggest boundary layers that are too shallow

(Hong et al. 2006; Coniglio et al. 2013). The MYJ PBL

scheme has the smallest bias in temperature and rela-

tive humidity below 850 hPa. Members utilizing the

Dudhia–RRTM radiation scheme combination also

have a slight warm bias compared to its RRTMG

scheme counterpart below 850 hPa. However, the

Dudhia–RRTM combination is slightly cooler than

RRTMG between 850 and 600 hPa. No significant
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FIG. 10. As in Fig. 6, but for wind speed.
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differences in temperature are seen between radiation

physics options above 600 hPa.

The effects of PBL schemes (mainly YSU) extend

farther into the midtroposphere in all fields except

temperature. MYJ has the driest bias between 800 and

;550hPa. Radiation schemes do not have as great of an

effect on relative humidity bias. The Dudhia–RRTM

combination has a slight dry bias over RRTMG below

850hPa. Horizontal wind fields are negligibly affected

by physics schemes (Figs. 12e–h). However, MYJ PBL

scheme seems to have a more negative bias over YSU

andMYNN inmid- to upper levels within the zonal wind

field while causing a more positive bias within the me-

ridional wind field.

5. Discussion and conclusions

Over this 4-day period, a total of 81 upsondes were

released nearby deep convection in a variety of storm-

relative locations. The decreasing sample size with

TABLE 3. Surface–700-hPa and surface–500-hPa wind shear RMSD andMB for all upsondes and each individual near-storm environment

region. All RMSDs and MBs are in m s21. The number of shear observations within each region is listed last.

Region

Surface–700-hPa

count

Surface–700-hPa

RMSD

Surface–700-hPa

MB

Surface–500-hPa

count

Surface–500-hPa

RMSD

Surface–500-hPa

MB

All 80 5.9 20.8 70 4.5 20.3

Inflow 17 7.2 24.2 11 6.8 21.3

Noninflow 63 5.2 20.2 59 4.3 20.4

Outflow 15 5.0 20.3 14 4.1 20.4

Nonoutflow 65 6.1 21.1 56 5.1 20.3

Anvil 57 6.0 20.4 47 5.2 0.1

Nonanvil 23 5.7 22.0 23 4.4 21.1

FIG. 11. Individual ensemble member bias histograms where frequency is number of ensemble member biases

over all 81 samples (2916 total) for (a) 875-hPa temperature with 0.5-K bins, (b) 750-hPa relative humidity with 5%

bins, (c) 225-hPa u wind with 1m s21 bins, and (d) 200-hPa y wind with 1m s21 bins.
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FIG. 12. RMSD and MB for mean of members with specific physics schemes [YSU PBL (red), MYJ PBL

(blue), MYNN PBL (green), Dudhia–RRTM combination (black), RRTMG combination (magenta)]. Pro-

files are for (a) temperature RMSD, (b) temperature MB, (c) relative humidity RMSD, (d) relative humidity

MB, (e) u-wind RMSD, (f) u-wind MB, (g) y-wind RMSD, and (h) y-wind MB.
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height obviously weakens conclusions made within the

upper troposphere, especially in near-storm environ-

ment regions with small sample sizes. Nonetheless, the

special MPEX observations revealed that WRF-ARW

ensemble mean analyses at CAM grid spacing agree

reasonably well with the observed convective near-

storm environments over this 4-day sequence, with

some notable exceptions.

1) A large variance in analysis temperature bias is

implied by a maximum of RMSD in temperature

just below 850hPa. This is likely in part a result of

model analyses improper handling of capping in-

versions at the top of the PBL (not shown), which

were present in many sounding datasets. The choice

of PBL schemes is found to greatly impact the low-

level temperature analyses. This has previously been

presented by Coniglio et al. (2013) where model

temperatures in preconvective environments are

highly dependent on PBL scheme.

2) The outflow region upsondes reveal a large warm

bias in the analyses near 850 hPa. Further inspec-

tion of individual soundings shows that the ensem-

ble analyses have warmer temperatures than ob-

served, a result consistent with the conclusions of

Engerer et al. (2008). Since cold pools are impor-

tant to the evolution of deep convection (Rotunno

et al. 1988; Weisman and Rotunno 2004), this result

deserves further attention as it could impact fore-

cast accuracy.

3) The negative temperature MB in upper levels is a

result of horizontal temperature gradients near the

tropopause not being accurately captured by the

analyses. Errors in horizontal temperature gradient

placements cause RMSD and MB magnitudes to

increase. Overall, near-storm temperatures are well

depicted in the ensemble analyses considering the

lack of conventional mesoscale temperature profile

observations.

4) Relative humidityMB is consistently between610%

below 500hPa in all regions nearby deep convection.

However, relative humidity RMSD increases with

height and is above 20% by 500hPa. The midlevel

relative humidity errors appear to be due to smooth

ensemble analyses and errors in dry and moist layer

vertical positions. A propagation of error analysis

created by the partial derivatives of a function can

reveal the impacts of variable errors on the function

(Ku 1966). The inflow moisture error at 850hPa

(mixing ratio bias of ;17.2 3 1024 kg kg21) com-

bined with error in 850-hPa temperature leads to an

850-hPa equivalent potential temperature (ue) bias of

;12K, where ;1.9K of the bias is due to moisture

error alone. The model has more latent heating due

to this error, which increases updraft speeds.

5) Inflow meridional wind MB below 700hPa is

near 23ms21, indicating that inflow wind speeds

are underestimated in the ensemble analyses. A

propagation of error calculation (Ku 1966) for

surface–500-hPa vertical wind shear given an inflow

meridional surface wind bias of ;24.8m s21 reveals

that this error only contributes to 20.16ms21 of the

inflow shear bias. Thus, the majority of wind shear

error likely originates from midlevel (500 hPa) wind

error. This notion deserves further study.

6) Within the upper troposphere between 300 and

150 hPa, both horizontal wind components have

large RMSDs. Upper-level wind MB are present in

all near-storm environment regions, but are more

pronounced within anvil regions, including within

the environments downstream of convection. These

results suggest the model struggles to accurately

depict convective alterations of the upper levels

where winds have a northwesterly directional bias

and speeds are underpredicted.

7) Inflow wind shear errors are largest given the larger

errors of low-level horizontal winds, particularly the

y-wind component.

Although analysis errors are large in some regions

surrounding the observed areas of deep convection, the

analyses created by radar and conventional data assim-

ilation depict convective near-storm environments that

agree reasonably well with the upsonde observations

and suggest thatmodel analyses are a trustworthy source

for insight into how deep convection alters the nearby

environment. Convective-scale model analyses are

therefore a suitable tool to assess the mesoscale feed-

backs due to convective storms, which could affect

further convection evolution. However, even more ex-

tensive near-storm observations are required to truly

evaluate the impact of convection on its surrounding

environment, particularly within inflow and outflow re-

gions. Other simulations with varying microphysics

schemes would evaluate cold pool strength and depth

sensitivity.
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